# **TT-NF:** Tensor Train Neural Fields

Anton Obukhov<sup>1</sup>, Mikhail Usvyatsov<sup>1</sup>, Christos Sakaridis<sup>1</sup>, Konrad Schindler<sup>1</sup>, Luc Van Gool<sup>1,2</sup>  $^1{\rm ETH}$ Zurich $^2{\rm KU}$ Leuven

 ${\bf TT-NF}$  is a low-rank representation of a neural field defined on a multi-dimensional grid.

- 1. Fully-differentible sparsity;
- 2. Logarithmic parameters scaling;
- 3. Training by backprop through samples;
- 4. Efficient batch sampling algorithms for DL.

### Where can it be used?

- 1. Tensor regression setting, in place of SVD-based schemes, such as TT-SVD, TT-Cross. Values  $y_i$  of the function  $F(i), i=(i_1, ..., i_D)$  approximated by the *D*-dimensional field  $F_{\theta}$  can be directly used to learn parameters  $\theta$  of the field. See **Tensor Denoising** experiments;
- 2. Deep setting, in which values of F cannot be evaluated. Field parameters  $\theta$  can be learned through implicit supervision of function  $G_{\gamma}\left(F_{\theta}(i^{(1)}), ..., F_{\theta}(i^{(K)})\right)$  with parameters  $\gamma$ , where the choice of indices *i* is governed by an external process. See **NeRF** experiments.

#### **Recap of Tensor Train Formats**

**Tensor Train (TT)** decomposition of a lowrank tensor of shape  $M_1 \times ... \times M_D$  and rank  $R = (R_0, R_1, ..., R_{D-1}, R_D)$ , where  $R_0 = R_D = 1$ , is a product of D factors of shape  $R_{i-1} \times M_i \times R_i$ :

$$A_{i_1,\dots,i_D} = \sum_{\beta_1,\dots,\beta_{D-1}=1}^{R_1,\dots,R_{D-1}} \mathcal{C}_{1,i_1,\beta_1}^{(1)} \cdot \mathcal{C}_{\beta_1,i_2,\beta_2}^{(2)} \cdots \mathcal{C}_{\beta_{D-1},i_D,:}^{(D)}$$

**Block TT** is an extension for vector-valued data of shape  $M_1 \times ... \times M_D \times R_D$ , where  $R_D > 1$ .

### **Tensor Denoising**

We choose TT-rank, parameterize the desired TT decomposition factors, and train it as a model with regression loss using the deep learning tooling.

$$\begin{array}{c|c} 1 & \mathcal{C}^{(1)} R_1 & \mathcal{C}^{(2)} R_2 \\ \hline & & & \\ M_1 & M_2 \end{array} & \cdots & \begin{array}{c} R_{D-1} \mathcal{C}^{(D)} R_D \\ \hline & & \\ M_D \end{array}$$

Compared to prior art, TT-NF is flexibile in choice of sampling strategy and presense of noise in y.

| Mathad         | Observation                                                  | Noise in<br>observations<br>Not supported<br>tern<br>men- Not supported<br>nuk |  |  |
|----------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Method         | access pattern                                               |                                                                                |  |  |
| TT-SVD         | Full tensor                                                  |                                                                                |  |  |
| TT-Cross       | On-demand, pattern<br>defined by dimen-<br>sions and TT-rank |                                                                                |  |  |
| TT-OI          | Full tensor                                                  | Sub-gaussian                                                                   |  |  |
| TT-NF<br>(our) | On-demand,<br>flexible batch size<br>and access pattern      | Any supported by<br>the choice of the loss<br>function                         |  |  |

TT-NF achieves best results on the synthetic task.



### Efficient Sampling

Multi-linearity of the TT format allows multiple sampling schemes. The proposed algorithm is the only one that unlocks learning intractable volumes.



## Neural Radiance Fields (NeRF)

Radiance field of size  $256^3 \times 28$  is parameterized using octet QTT format with 8 levels of hierarchy. The format is inspired by octrees used in graphics; allows learning large hierarchical voxel grids.



TT-NF archieves competitive results with baseline NeRF and other forms of differentiable sparsity.

| Metric | Method<br>(shading) | Chair | Drums | Ficus | Hotdog | Lego  | Materials | Mic   | Ship  | Avg   |
|--------|---------------------|-------|-------|-------|--------|-------|-----------|-------|-------|-------|
| PSNR↑  | NeRF                | 33.00 | 25.01 | 30.13 | 36.18  | 32.54 | 29.62     | 32.91 | 28.65 | 31.0  |
|        | TensoRF (-mask)     | 32.19 | 25.01 | 30.81 | 35.28  | 33.54 | 28.81     | 31.72 | 28.90 | 30.78 |
|        | QTT-NF (SH)         | 32.09 | 24.96 | 30.89 | 35.49  | 32.48 | 28.22     | 31.50 | 27.55 | 30.40 |
|        | QTT-NF (NN)         | 32.87 | 25.30 | 31.85 | 35.97  | 33.00 | 28.67     | 33.07 | 27.97 | 31.09 |

Ablation of capacity invariance to content rotation.



**TLDR**: fully-differentiable type of sparsity for learning hierarchical multi-dimensional data or embeddings (fields) using standard deep learning tools.

Twitter: @antonobukhov1 Project: obukhov.ai/ttnf

**ETH** zürich

