
Breathing New Life into 3D Assets with Generative Repainting

Tianfu Wang1 Menelaos Kanakis1 Konrad Schindler2 Luc Van Gool1,3,4 Anton Obukhov1→2

1ETH Zürich, Computer Vision Laboratory 2ETH Zürich, Photogrammetry and Remote Sensing 3KU Leuven 4INSAIT, Sofia

Figure 1. We present a pipeline for text-guided painting of legacy geometry. We leverage rich pretrained generative 2D diffusion
models to give a fresh look to existing 3D assets, and neural radiance fields to enforce 3D consistency and overcome issues of the legacy
representations. Starting from an input geometry and the desired output description, our pipeline orchestrates calls to several generative and
modality conversion tools to breathe new life into the input assets. The tools communicate using images instead of gradients with each other,
making our pipeline interpretable and amenable to partial upgrades. Project page: https://www.obukhov.ai/repainting 3d assets.

Abstract

Diffusion-based text-to-image models ignited immense
attention from the vision community, artists, and content
creators. Broad adoption of these models is due to signifi-
cant improvement in the quality of generations and efficient
conditioning on various modalities, not just text. However,
lifting the rich generative priors of these 2D models into
3D is challenging. Recent works have proposed various
pipelines powered by the entanglement of diffusion models
and neural fields. We explore the power of pretrained 2D
diffusion models and standard 3D neural radiance fields as
independent, standalone tools and demonstrate their ability
to work together in a non-learned fashion. Such modularity
has the intrinsic advantage of eased partial upgrades, which
became an important property in such a fast-paced domain.
Our pipeline accepts any legacy renderable geometry, such
as textured or untextured meshes, orchestrates the interac-
tion between 2D generative refinement and 3D consistency
enforcement tools, and outputs a painted input geometry
in several formats. We conduct a large-scale study on a
wide range of objects and categories from the ShapeNetSem
dataset and demonstrate the advantages of our approach,
both qualitatively and quantitatively.

1. Introduction

Creating high-quality 3D assets based on textual descrip-
tions for a diverse range of objects is an endeavor with great
potential for digital media and artists. Recently, there has
been a rise in denoising diffusion-based (DDPM) [14] text-
to-image models [30,32] producing results of unprecedented
quality. The generative power of these 2D image models
prompts the question: Can we use them to generate multi-
view consistent 3D content? As it turns out, lifting these rich
generative priors to 3D is a non-trivial task. In this work,
we focus on the problem of text- and geometry-conditioned
painting, an adjacent problem of text-to-3D generation.

The overview of our pipeline for generating a diverse
multi-view consistent painting from a text description and
input geometry is presented in Fig. 1. We bootstrap our
pipeline from two crucial components: a pretrained genera-
tive text- and depth-conditioned image diffusion model [30]
and neural radiance fields (NeRF) [19]. The design of our
pipeline separates these components into distinct processes,
which communicate using the interface of image files. This
is contrary to several recent approaches that rely on gradient
flow between the components, either in the form of Score
Distillation [18,26], or differentiable rendering [29]. We rely
on traditional rendering techniques to enable communication
between the components, including Z-buffer extraction for
the rendered views. The image file interface is naturally

1

https://www.obukhov.ai/repainting_3d_assets


Figure 2. Texturing the ShapeNetSem [6] dataset with the proposed method. We discard the original texture and paint objects with our
method using the dataset metadata “name” field as a text prompt. We show several objects from 5 views spaced with 45-degree increments
around the vertical axis. Our method produces high-quality results from the input text and geometry. More visual results in Figs. 6, 7.

interpretable and better suited for building modular and par-
tially upgradable systems. This is especially important as
both DDPM and NeRF research fields advance rapidly.

Prior generative 3D works often employ the UV texture
unwrapping [16], a costly operation and a potential point
of failure. Since our method requires only Z-buffer queries
from the input geometry, the input does not necessarily have
to have a UV texture map attached or even be a valid mesh.
To support this claim, we experimented with Point-E [21],
thus extending our pipeline to a pure text-to-3D setting.

The output of our pipeline is a NeRF corresponding to the
input geometry, painted in a multi-view consistent manner.
The NeRF can be converted into the explicit input format
with extra coloring information.

Our pipeline’s performance depends on each component’s
performance, so it will keep improving as the components
get faster. For example, recent progress in DDPMs [30]
led to a tenfold decrease in image generation time; NeRF
research has seen similar speedups [20]. Capitalizing on that,
we conduct a large-scale study of painting the ShapeNet-
Sem [6] dataset, composed of 12K objects from over 270
categories (Fig. 2). The study shows that our pipeline sets
new state-of-the-art results on several generative metrics
while attaining proper 3D consistency.

The summary of our contributions is as follows:

• We introduce a novel approach for giving 3D assets a
new life, by painting their geometry using text inputs
and pretrained generative image diffusion models.

• Our method is unique in that it combines pretrained
2D diffusion models and 3D neural radiance fields as

standalone pipelines. The weak coupling of tools is
achieved through the interpretable interface of image
files and permits partial upgrades.

• We conduct a large-scale study of painting ShapeNet-
Sem [6] dataset and attain the new state-of-the-art on
several metrics and perceived 3D consistency.

• Our method is robust to input corruptions and produces
the output assets in several formats.

2. Related Work

Generative Text-to-Image Models Until recently, gen-
erative imaging was dominated by unconditional or few-
classes-conditional models [5, 12, 35]. With advancements
in natural language processing, Contrastive Language-Image
Pretraining (CLIP) [27] bridged the gap between visual and
text modalities. This opened an avenue for open-category
and text-conditioned image generation. Currently, Denoising
Diffusion Probabilistic Models (DDPM) [14, 32] dominate
the niche of high-quality and affordable text-conditioned
generative imaging. Stable Diffusion [30] proposed shift-
ing the diffusion process to a low dimensional latent space,
achieving competitive performance while reducing the com-
putation requirements. Subsequent models could further
condition the process on various modalities, such as depth
maps, images, and inpainting masks. These new modalities
and accessible pretrained checkpoints gave rise to new appli-
cations of diffusion models, such as image un-cropping [31]
and perpetual view generation [4]. Likewise, our method

2



Figure 3. Geometry painting pipeline that takes the geometry, a text prompt, and outputs a painted NeRF of the model. We utilize the
diffusion image generation process and the 3D reconstruction process of NeRF as standalone procedures. We start by generating the facade
views using only diffusion view generation. Our pipeline progressively builds the 3D model by using NeRF to generate view-consistent
images and feeding them back to the diffusion process to generate a new input view according to the view selection strategy.

relies on standalone pretrained DDPMs with their various
ways of conditioning.

Neural Radiance Fields Neural scene representations
gained popularity due to their simplicity of usage and abil-
ity to capture complex scenes efficiently. Neural Radiance
Fields (NeRF) [19] have recently demonstrated their ver-
satility as a solution for 3D reconstruction from posed im-
ages. Recently, numerous improvements and variants of
NeRF have been developed [7, 20, 24]. In particular, Instant
NGP [20] proposed an efficient multi-resolution hash-based
grid data structure, which reduces the training time of NeRF
from hours to minutes. Similarly to COLMAP [33] for
structure for motion, Instant NGP has become the go-to
standalone tool for images to NeRF conversion.

Generative 3D Models Research on high-quality 3D
models and assets generation gained a lot of interest re-
cently [11, 26, 34, 37, 38]. Previous methods leveraged Gen-
erative Adversarial Networks (GANs) [12] coupled with
3D-aware learned pipelines, such as differentiable render-
ers [11], face convolutional neural networks (CNNs) [34],
voxel grids [38], and NeRFs [5, 39]. However, most of the
methods require training a separate model per category, and
thus, the evaluation focuses on a handful of classes, typically
“cars” and “chairs”, such as seen in ShapeNet [6]. With the
rise of popularity in diffusion models and accessible text
conditioning, recent works focused on integrating them into
3D content generation pipelines [26, 37]. DreamFusion [26]
proposed score distillation sampling to couple a pretrained
text-to-image diffusion model with a NeRF module to form
an end-to-end trainable pipeline. Although score distillation
cleverly avoids backpropagation through the diffusion model,
thus reducing computational costs, it still requires signifi-
cant computations. Pipelines with surrogate 3D output [21]
have also received attention. Mesh-based inpainting schemes
such as Latent-Paint [18] and TEXTure [29] employ differ-
entiable rendering to generate a texture image for the input
mesh. However, these methods are susceptible to artifacts

introduced during UV texture unwrapping and gradient inter-
action between the generative model and the texturing target.
Another two relevant works appeared recently: Text2Tex [8]
utilizes a mesh-based inpainting scheme similar to TEX-
Ture [29]; TextMesh [8] combines NeRF with SDS loss akin
to DreamFusion [26]. Our method overcomes the discussed
limitations by using NeRF for both scene representation and
iterative consistency enforcement.

3. Method

The pipeline of our method is outlined in Fig. 3. It takes
an input geometry and a text description and generates a
NeRF model that adheres to the structure of input geome-
try but is enhanced with text-guided painting. It paints the
geometry progressively: starting from the object facade ini-
tialization, it iteratively picks a novel view according to the
camera pose selection strategy, generates a novel view, and
reconciles it with the previous views using NeRF.

Prerequisites and Assumptions Our pipeline is object-
centric; hence, we create a virtual scene with the object
scaled and positioned in the origin and a camera positioned
on a unit sphere, pointing at the origin. We additionally
assume that the object surface is opaque, which is required
to perform unambiguous queries of the renderer’s Z-buffer.
This constraint limits processing models with transparency
or with large sprite surfaces (e.g., for trees or flowers), some-
times seen in ShapeNetSem. As discussed in the previous
chapters, the input geometry is not required to have UV
unwrapping or other properties attached to the geometry.
Whenever normals are available, the inpainting procedure
can benefit from them through an additional inpainting zon-
ing step; however, this is optional.

We require a pretrained image diffusion model with text
and depth conditioning to paint novel views. From the NeRF
pipeline, we expect that it can ingest view images, poses,
and optional depth maps, and output a model that can be
queried at arbitrary poses for color and depth.

3



Figure 4. Novel view remapping from a previous view. Multi-view consistency is enforced by remapping the previous view into the
novel view and preparing the inpainting mask of the unseen areas. The remapping procedure consists of three steps: (1) obtaining sampling
coordinates of the previous view in the novel view, (2) sampling the novel view from the previous view, and (3) obtaining the inpainting
mask by analyzing occlusions. An optional inpainting zoning step provides better control of inpainting for inputs with surface normals.

Initialization The first view generation defines and con-
strains the object’s overall painting and style. To obtain the
first painted view, we render the object’s depth map and
give it together with the text prompt to the depth-to-image
pipeline. At this point, it is possible to query the user if the
generated initialization is according to expectation and make
early alterations by changing text or the pipeline seed.

Novel View Remapping Multi-view consistency is crucial
for generating meaningful geometry painting. However, it
is tricky to achieve in a pipeline with disentangled stages
applied one after another, such as our design. To this end,
we employ an occlusion-aware backward remapping scheme
for image view reprojection from a previously-painted view
to the novel one (Fig. 4).

At its core is the view transformation P = KEK−1,
which transforms normalized device coordinates (NDC) of
the previous view into the novel view, where K is the projec-
tion from world to NDC space and E = [R|T] is the relative
transformation of camera poses in world coordinates.

As a first step, we use the inverse transform P−1 to map

the novel view NDC coordinates with z-values assigned from
the Z-buffer of the novel view rendering into the previous
view. This gives us an xy-map (depicted as a green-red tile)
of pixels of the novel view and their source locations directly
in the previous view. The transform also gives us the depth
map of the source locations as seen from the previous view,
which is used for the occlusion test.

Secondly, we obtain the previous view’s backward remap-
ping into the novel view using the bilinear interpolation of
the previous view at the xy-map locations. Compared to the
direct application of the transform P to the previous view
image, the backward remapping is continuous by design and
guarantees the absence of seams or holes in the remapped
image.

However, an additional occlusion mask is required to
identify areas of the novel view that are not visible from the
previous view to handle these areas properly. Thus, as a third
step, we obtain this mask by comparing the previous view
depth map resampled using our xy-map, with the z-values
obtained from the transformation on the first step. Evidently,
the positions with agreeing depth are visible in both views

4



Figure 5. Our text- and depth-conditioned latent diffusion inpainting pipeline for constrained novel view synthesis. It is inspired
by both the inpainting pipeline that takes an inpainting mask and applies it to the latents, and the text- and depth-conditioned generation
pipeline from the Stable Diffusion distribution [30]. At each diffusion time step, the latents are composed from the forward diffusion step
over the inpainting constraints (“Remap” in the figure), and the reverse diffusion step, conditioned on the input text prompt and depth.

under the assumptions we declared in the prerequisites. The
final remapped view is thus obtained by combining the out-
puts of the previous two steps.

Additionally, the occlusion mask is stored for the future
inpainting stage. Since most inpainting methods permit vary-
ing inpainting strength per pixel, we additionally compute
inpainting zones map (similar to “trimaps” in TEXTure [29]),
whenever the input geometry has surface normals. Specif-
ically, we assign the visibility score to each fragment as a
dot product between the surface normal and the unit vector
originating in the camera origin and pointing at the fragment.
By comparing visibility scores between the previous and
novel views’ fragments, we classify zones into areas that are
kept intact, areas of full inpainting, or refinement. As we
identify in the ablation study, inpainting zoning helps with
multi-view consistent painting details.

Finally, as we expand the painted area of the input, more
views become available for color transfer to a novel view.
The described procedure is thus easily extended to perform
remapping from multiple previous views.

Novel View Inpainting We employ a custom text- and
depth-conditioned latent diffusion inpainting pipeline to com-
plete novel views after the remapping. The pipeline inher-
its from the previous works on inpainting with diffusion
models [9, 17] and is largely based on the pretrained Stable
Diffusion [30]. The input to the pipeline is the same as for
image generation, with the addition of a mask that defines the
inpainting area and the remapped image constraint (Fig. 5).

The mask M is taken from the remapping stage and down-

sampled to match the latent diffusion resolution. Upon avail-
ability, inpainting zoning additionally assigns an intermedi-
ate weight value for the refined areas.

At each denoising step t, we take the latent representation
of the remapped image x0 and inject noise through t forward
diffusion steps to obtain xt. At the same time, we perform
a single reverse diffusion step to obtain yt from the more
noisy ỹt+1 step, at which point we use the depth and the
text prompt as conditions. We now blend the denoised latent
yt with remapped conditoon xt using the inpainting mask
M : ỹt = (1 − M)yt + Mxt. This process starts with
ỹmax ∼ N (0, 1) and is repeated until obtaining ỹ0, which
is then decoded into the inpainting output. Notably, latent
diffusion is the primary source of inconsistency between the
inpainted images and their remapped constraints, which calls
for a solution to enforce multi-view consistency globally.

NeRF Reconstruction Using the remapping and inpaint-
ing techniques introduced above, we can ensure the soft
consistency of a subset of proximal views. However, we aim
for global multi-view consistency, which requires consider-
ing all the generated views simultaneously. To this end, we
employ a flavor of NeRF to resolve multi-view conflicts and
reconcile painting from all viewpoints. Since the standard
NeRF formulation supports different colors of the same 3D
location depending on the viewpoint, we disable such view-
dependent effects and fit the NeRF to predict view-invariant
colors instead. Starting with a set of facade views and until
there are no more unvisited poses, we submit all the gener-
ated images, their respective camera poses, and depth maps,

5



Figure 6. Qualitative Comparisons of our method to TEXTure [29], Latent-Paint [18], the original texturing from ShapeNetSem [6], and
the “upper-bound quality” generative prior applied to each individual view without 3D consistency constraints. As can be seen, our method
generates noise- and seam-free texturing with a high degree of detail.

as inputs to NeRF. Once the scene is fitted, all painted train-
ing images are replaced with renders from the fitted NeRF,
so that our subsequent remapping steps always start from
multi-view consistent inputs.

4. Experiments
As a first step towards painting ShapeNetSem, we chose

a few hyperparameters for our pipeline. To paint each model,
we rely on 9 views regularly spaced around the object in the
horizontal plane (40◦ increment). Starting from the front
view, we generate 5 facade views using just the remapping
and inpainting procedures. This facade configuration maxi-
mizes the coverage of the input geometry within the range
of efficiency of our remapping technique. Before generat-
ing each subsequent view, we perform NeRF reconstruction.
Our pose selection strategy picks the next view from the
clockwise and counter-clockwise increments in alternating
steps. We remap two of the closest painted views from the
left and right paths around the model each time. This tech-
nique helps minimize the content gap in the last view, where
the clockwise and counter-clockwise painting paths meet.

Text Prompting The base is set to “A photo of {{object}}”.
An additional “{{dir}} view” modifier specifies the coarse
relation of the viewpoint and the object, helping with 3D
consistency. Other modifiers are discussed in the Appendix.

NeRF Setup We chose Instant NGP [20] as a standalone
NeRF backbone for its high degree of configurability and
great performance. Additionally, we leverage depth super-
vision in NeRF training to facilitate faster convergence and
obtain higher-quality reconstruction.

Our setting slightly differs from the default NeRF objec-

tive because our training images are generated from diffusion
and can have soft view conflicts. As mentioned previously,
the purpose of NeRF in our pipeline is to bring multi-view
painting to agreement rather than to simulate light transport.
We disable view-dependent effects in the NeRF configura-
tion to align with this purpose. Additionally, we adjust the
parameters for the grid encoding settings. We found that
a higher number of levels (5) and encoded features (16)
achieve good rendering fidelity while keeping a sufficiently
smooth and continuous NeRF surface.

ShapeNetSem Processing We demonstrate that our
method can be applied to a wide range of object categories
and shapes by conducting a study of texturing a significant
subset of the ShapeNet [6] dataset called ShapeNetSem,
which contains 12K models in over 270 categories. We pre-
process each model by orienting it using the up and front
vectors from the metadata, centering, and scaling to fit the
unit sphere. We take the text prompt’s “object” part from the
name field of the dataset metadata.

Each model has a list of associated categories attached
to it. We compute frequencies of all categories in the entire
dataset and assign each model a primary category. These
primary categories are used for both qualitative and quantita-
tive studies. We demonstrate high-quality painting results on
a select set of categories, including electronics, animals, and
game characters, in Fig. 2. See Figs. 6, 7 for more results.

Comparison with Other Methods We compare our
method quantitatively with two recent mesh texturing meth-
ods, Latent-Paint [18] and TEXTure [29] (Fig. 6). We ran
both pipelines on the ShapeNetSem [6] dataset using the
same 360-degree camera views and text prompts. While the

6



https://www.youtube.com/watch?v=S-MUFPurJpc

Figure 7. Large-Scale Comparison of ShapeNetSem Texturing
with the original textures [6], Latent-Paint [18], TEXTure [29], and
our method. We present spin-views of ∼12K models from over
270 categories. The models are grouped by category and sorted
by group size. Categories, IDs, and model names (prompts) are
specified under the corresponding video tiles. Tip: Use timecodes
to conveniently skip to categories of interest.

Figure 8. A Closer Look reveals that our method produces more
realistic results with invisible seams, while other methods often
exhibit texture filtering issues and lower realism.

Figure 9. Exporting NeRF as Mesh. Given the input mesh and
the painted NeRF, we remesh the input almost isotropically with
planarity constraints and sample vertex colors from the NeRF. This
technique does not require a UV texture map for the input geometry.

TEXTure method handles well-defined camera trajectories,
Latent-Paint requires way more views to perform decently;
otherwise, we kept their default settings and ensured align-
ment of the cameras. We rendered interpolated views of the
output models and compared the results of the two pipelines.

To facilitate the quantitative study, we additionally gener-

ated painting results for the evaluation views using only the
Stable Diffusion [30] depth-to-image model. Although this
set of images completely lacks 3D consistency, it provides
a useful upper bound on the image fidelity that is attainable
with the generative model.

After processing all models with the selected methods, we
render their 360-degree spin views using synchronized cam-
era setups and aggregate them in the video gallery (Fig. 7).

A closer look at the output renders in the video (also the
car model in Fig. 8) reveals discernible quality differences
between different geometry painting methods. We can see
that the original ShapeNet [6] textures are rather primitive.
Latent-Paint [18] exhibits blurred and overall coarse textur-
ing. TEXTure [29] produces much more realism and details;
however, compared to our method, its output contains spuri-
ous artifacts and texture filtering issues. This effect is preva-
lent in complex meshes containing many fine-grain geometry
details. We observe that both prior methods have distinct
artifacts that stem from the effective resolution of the UV
texture maps, texture atlas patch discontinuities, and imper-
fect UV unwrapping. These issues are further exacerbated
when differentiable rendering is employed. Our method is
free of these issues; refer to the Appendix for discussion.

Compute Requirements Unlike the other two methods,
whose memory footprint fluctuates depending on the 3D
model complexity and requires at least 16GB GPU RAM,
our method’s resources are defined purely by NeRF configu-
ration and are fixed across the whole dataset to 12GB RAM.
Our pipeline configured as stated above takes ∼15-20 min
to complete, which is on par with the competition.

Quantitative Evaluation We execute our pipeline, col-
lect the output NeRF, and sample it at 8 different evaluation
views at 45◦ increments. Using collections of these views
obtained for all models in the dataset, we compared distribu-
tion metrics between each method and the reference (no 3D
consistency) for the whole dataset and several primary cate-
gories. Through this evaluation, we aim to understand how
close we can get to the upper bound of lifting the learned
generative prior in 3D while maintaining 3D consistency by
design. Frechet Inception Distance (FID) [13] and Kernel
Inception Distance (KID) [2] are the standard metrics for
comparing distributions of images: natural or sampled from
generative models.

Following the footsteps of [15], we report FIDCLIP with
the CLIP feature extractor. We additionally propose two
new metrics: FIDDINOv2 and KIDDINOv2, which utilize the
novel self-supervised feature extraction techniques [25]. Un-
like the decade-old Inception backbone and CLIP, which
focuses on named entities, DINOv2 is a powerful self-
supervised feature extractor trained on natural images. All
metrics are computed through a verified evaluation protocol
of torch-fidelity [23]. The results of this quantitative study

7

https://www.youtube.com/watch?v=S-MUFPurJpc


Table 1. Comparison of geometry painting with various methods on ShapeNetSem [6] dataset measured through Frechet Inception Distance
(FID ↓) [13] metric with various feature extractors. Lower values are better. Results with Kernel Inception Distance [2] metric are in Tab. 2.

FID ↓ [13]
Features

Methods

All
(11992)

Misc.
(2912)

Chair
(682)

Lamp
(655)

ChstDrw.
(503)

Table
(416)

Couch
(405)

Computer
(241) TV (229) WallArt

(220)
Bed

(218)
Cabt.
(216)

Inception
[13, 36]

Orig. texture [6] 30.10 31.82 40.79 47.61 113.6 49.18 81.39 63.02 60.89 64.92 67.37 111.9
Latent-Paint [18] 27.73 30.87 36.65 38.36 67.60 28.44 65.98 68.85 67.85 90.99 49.04 73.60
TEXTure [29] 16.10 18.34 23.44 30.75 32.65 34.98 40.40 46.48 45.85 61.23 43.04 38.88
Ours 9.60 11.05 16.30 19.54 32.64 22.01 26.23 39.96 29.60 35.77 33.13 36.28

CLIP
[15, 27]

Orig. texture [6] 18.86 18.71 24.89 27.66 40.15 25.72 33.57 20.60 27.29 18.86 28.79 37.07
Latent-Paint [18] 15.84 16.42 17.08 12.29 29.51 11.34 22.22 24.50 22.47 27.30 19.35 27.83
TEXTure [29] 6.85 6.85 9.62 9.37 11.29 11.00 9.48 11.28 11.38 13.17 11.09 9.79
Ours 3.24 3.33 3.90 3.47 7.77 4.12 4.69 8.22 6.16 6.18 5.54 7.30

DINOv2
[25]

Orig. texture [6] 588.1 585.9 620.6 787.3 1640. 883.9 1265.6 767.1 999.4 857.9 946.3 1517.
Latent-Paint [18] 332.9 366.1 285.8 329.0 696.6 280.6 556.3 673.4 773.9 866.5 533.4 765.1
TEXTure [29] 175.0 194.6 181.1 278.9 321.6 248.0 282.1 404.4 501.5 580.3 276.7 366.2
Ours 125.1 136.7 130.8 181.6 299.4 173.1 239.4 383.0 333.5 312.2 226.3 320.2

are presented in Tab. 1. Evidently, our method achieves state-
of-the-art fidelity to the generative prior while maintaining
3D consistency.

Geometry Export The output of our pipeline is contained
in the final NeRF reconstruction. While NeRF as a 3D asset
format gains popularity as hardware acceleration catches up,
we take an extra step to transfer the generated painting back
into a standard editable format. Since we do not require
UV texture maps on the input and want to support use cases
such as Point-E discussed below, we opt for transferring
colors to the input mesh vertices. However, to ensure suffi-
cient spatial resolution for such a scheme, vertices should be
uniformly distributed on the surface of the input, which is
usually not the case. To overcome this issue, we designed
an algorithm for approximately-isotropic remeshing [22]
that preserves the input geometry and only focuses on pla-
nar regions (Fig. 9). Using our remeshing technique helps
obtain an identical mesh but with sufficient resolution for
color transfer. Thanks to unambiguous color querying from
our view-invariant NeRF flavor, we directly transfer color
onto the remeshed input by sampling NeRF at all vertices
locations. We further note, that the output asset files with
per-vertex colors occupy significant space, which can be
reclaimed by compression techniques such as DRACO [1].

Pure Text-to-3D via Point-E We extend our pipeline
with Point-E [21], a diffusion-based generative model that
produces 3D point clouds from text prompts. Following [21],
we convert the point cloud generated by Point-E to a signed
distance field and use marching cubes with grid size 64 to
obtain the mesh serving as an input to our method. Since the
resulting geometry has surface normals of limited quality,
we skip inpainting zoning in our method. Fig. 10 demon-
strates an overall pipeline that takes only a text prompt as
the input and outputs a mesh with improved painting. From
the opposite point of view, since Point-E cannot generate

Figure 10. Painting Point-E [21]. We extend our pipeline to pure
text-to-3D by chaining it after Point-E. The same text prompt is
used to generate the geometry and then repaint it with our method.

detailed textures, our method can be seen as a downstream
modular extension of Point-E to boost the texture quality of
the produced 3D models.

5. Discussions and Conclusion
In this work, we presented a novel pipeline combining a

generative 2D diffusion prior and 3D neural radiance fields
as standalone modules and demonstrated their ability to paint
the input geometry using a text prompt in a 3D-consistent
manner. We conducted a large-scale study on the ShapeNet-
Sem [6] dataset and demonstrated the advantages of our
approach against several prior art methods on a wide range
of object categories. We believe that our pipeline will reach
the community of artists, content creators, and game devel-
opers and enable quick prototyping of 3D assets, particularly
from existing ones, thus giving them a new life.

We thank Shengyu Huang for proofreading this manuscript.

8



Breathing New Life into 3D Assets with Generative Repainting

Supplementary Material

A. Large-Scale Study of ShapeNetSem

Out of 12,288 models in the dataset, we processed 11,992
with all methods. The remaining 296 models either had flat
geometry or could not be processed by the Latent-Paint [18]
pipeline, TEXTure [29], or both. The failure cases happened
most commonly due to the complex geometry not fitting
16GB GPU RAM within the respective method pipeline
or failures in xatlas texture UV unwrapping module [16].
Our method produced results consistently even on these
models, but for a fair comparison, we excluded these models
completely.

In addition to the FID [13] evaluation from Tab. 1, we pro-
vide a quantitative evaluation of all pipelines on ShapeNet-
Sem with the KID metric [2] in Tab. 2.

The ability of our method to handle complex geometry,
low memory footprint, weak dependence on the geometry
format or the rendering pipeline, and potentially unknown
texture coordinates – all these properties make our method a
reliable go-to solution for 3D assets revamping.

B. Subjective User Study

We conducted a limited crowd-sourced perceptual com-
parison between Latent-Paint [18], TEXTure [29], and our
method. The study was based on 50 randomly sampled mod-
els from 10 categories, c.f. Tab. 1. Subjects were instructed
(Fig. 11, left) to analyze and vote for higher quality and
realism after observing a full 360◦ spin of models painted
with a pair of methods, side by side. Each subject submit-
ted 20 votes, plus 2 validation questions with predefined
correct answers (Fig. 11, right). 35 subjects participated in
our study, of which 29 (83%) passed the validation. 638
votes were collected, ensuring at least 3 votes for every
pair, and aggregated into preference scores with the Crowd
Bradley-Terry [3] model. The resulting scores were (log-
scale, up to additive constant, 95% confidence intervals,
higher is better): SLatent−Paint = 0.15±0.15, STEXTure =
0.30±0.11, Sours = 1.86±0.13. The scores agree with the
quantitative results.

C. ShapeNet Rendering Settings

To facilitate a fair comparison of different methods on
the ShapeNetSem dataset [6], we choose the mesh rendering
settings in all pipelines such that the output result is adequate
for all methods. Notably, TEXTure [29] relies on mesh
normals to determine inpainting regions. However, a subset
of ShapeNetSem [6] meshes have faces with inappropriately

Quality Quality

Realism Realism

Figure 11. Subjective Study. Left: User instruction with quality
and realism judgment examples; Right: Two validation questions
“Which one is better?” shared among all subjects to ensure engage-
ment (the right column answers were expected for a pass).

oriented surface normals. For these meshes, directly passing
them as input to TEXTure [29] produces corrupt texturing.

To address this issue, we utilize back-face culling of
mesh to disable the rendering of mesh faces that are ori-
ented away from the camera. We build our method on top of
PyTorch3D [28], which provides a built-in implementation
of back-face culling. However, since both Latent-Paint [18]
and TEXTure [29] pipelines rely on the Kaolin renderer [10],
which did not implement back-face culling as of the time of
writing, we implemented back-face culling in software. This
allowed us to address the rendering discrepancy and level
the settings for all pipelines.

We experimented with double-face rendering as an alter-
native approach to resolving face orientation issues. How-
ever, the result of using double-face rendering is worse than
that of using back-face culling, as seen in Fig. 12 (left).
We suspect this is due to areas of the mesh having overlap-
ping front-facing faces in the double-face rendering setting,
thereby negatively affecting texture back-projection in the
TEXTure [29] method. Overall, our rendering protocol is
chosen to maximize the output quality of the pipelines rely-
ing on differential rendering under complex geometry.

D. Ablation: Inpainting Zoning

Inpainting zoning works in areas of the mesh that face
away from the camera in one generated view so that they can
be further refined in the subsequent views. Fig. 12 (middle)
shows that our refinement scheme brings more details to the
areas of the model with challenging visibility constraints.

9



Table 2. Comparison of geometry painting with various methods on ShapeNetSem [6] dataset measured through Kernel Inception Distance
(KID ↓) [2] metric with various feature extractors. Standard deviations are given in small font for all values. Lower values are better.

KID ↓ [2]
Features
Multiplier

Methods

All
(11992)

Misc.
(2912)

Chair
(682)

Lamp
(655)

ChstDrw.
(503)

Table
(416)

Couch
(405)

Computer
(241) TV (229) WallArt

(220)
Bed

(218)
Cabt.
(216)

Inception
[2, 13, 36]
×0.01

Orig. texture [6] 1.19±0.04 1.18±0.09 1.40±0.20 2.03±0.38 7.89±0.79 1.61±0.26 4.47±0.56 2.76±0.47 3.04±0.40 1.84±0.52 2.72±0.36 5.98±0.69

Latent-Paint [18] 1.31±0.05 1.37±0.11 2.02±0.25 1.95±0.36 4.52±0.54 1.05±0.21 4.26±0.39 3.84±0.35 4.17±0.34 3.81±0.58 2.14±0.32 4.19±0.47

TEXTure [29] 0.75±0.04 0.71±0.08 1.19±0.20 1.61±0.35 1.79±0.38 1.97±0.32 2.37±0.48 2.14±0.33 2.36±0.31 2.10±0.41 1.90±0.32 1.54±0.29

Ours 0.44±0.03 0.38±0.06 0.65±0.18 0.80±0.24 1.88±0.48 0.94±0.22 1.14±0.30 1.74±0.36 1.06±0.24 0.53±0.16 1.09±0.22 1.32±0.41

CLIP
[15, 27]
×0.01

Orig. texture [6] 9.33±0.26 8.92±0.50 13.1±1.38 14.6±1.38 21.1±1.71 13.0±1.19 18.7±1.73 8.36±1.12 14.3±1.41 5.89±1.22 14.2±1.32 17.7±1.76

Latent-Paint [18] 7.87±0.18 7.87±0.37 9.36±0.57 6.44±0.67 17.1±1.23 5.47±0.48 13.1±0.85 12.1±0.81 11.2±0.67 10.7±0.99 10.5±0.91 15.7±1.20

TEXTure [29] 3.18±0.09 3.04±0.21 5.12±0.46 4.84±0.62 5.81±0.67 5.67±0.52 4.82±0.60 4.68±0.43 4.63±0.47 3.99±0.65 5.61±0.50 4.40±0.48

Ours 1.36±0.06 1.30±0.13 1.69±0.32 1.51±0.27 3.73±0.70 1.90±0.34 2.07±0.39 2.98±0.61 2.14±0.48 0.96±0.27 2.09±0.36 3.12±0.62

DINOv2
[25]
×1.0

Orig. texture [6] 2.40±0.06 2.36±0.15 3.65±0.37 4.95±0.47 11.9±0.98 5.94±0.61 14.1±1.46 5.42±0.85 9.80±0.96 3.75±0.75 7.56±0.69 9.74±0.79

Latent-Paint [18] 1.01±0.02 1.04±0.05 1.85±0.25 2.09±0.25 5.51±0.51 1.62±0.25 6.61±0.83 5.49±0.54 8.87±0.71 3.37±0.49 4.26±0.50 5.21±0.52

TEXTure [29] 0.53±0.02 0.50±0.03 1.18±0.24 1.76±0.27 2.56±0.43 1.67±0.27 3.32±0.62 3.72±0.50 3.97±0.61 2.17±0.44 2.21±0.31 2.37±0.39

Ours 0.38±0.01 0.35±0.03 0.63±0.21 1.07±0.21 2.01±0.48 1.03±0.21 1.90±0.64 3.14±0.66 2.24±0.43 0.86±0.19 1.08±0.23 1.58±0.37

Figure 12. Ablations. Left: Rendering Settings Comparison with TEXTure [29] method. Employing back-face culling achieves the best
result compared with the original1 and double-face rendering settings. Middle: Visibility Score Refinement produces more realistic details
on surfaces seen at sharp angles, such as the ear. Right: Low number of generated views (4) leads to poor coverage of the input geometry,
18 results in over-smoothing, and 9 is a trade-off.

E. Ablation: Number of Input Views
We show a qualitative comparison between models

painted using various numbers of input views in Fig. 12
(right). With just 4 input views, we find holes and artifacts
on the object’s surface. With 18 views, the shape is smooth,
but the generated color lacks detail. The choice of 9 views
achieves the best quality.

F. Prompt Augmentation
Our method transparently exposes the style guidance func-

tionality of the underlying generative models. It permits
prompt augmentation, enabling greater variety in the gener-
ated painting while preserving 3D consistency. Specifically,
our pipeline extends the input object description prompt as
follows: “A photo of a {{modifier}} {{object}}, {{dir}} view”.
The “{{modifier}}” style specifier term could be the color or
the material of the object. In the same vein as text guides im-
age generation models, the texture of our 3D models changes
according to the modifier, as shown in Fig. 13.

Figure 13. Style Specifier Guidance. In the given examples,
prompts take the following form: “A photo of a {{material}}
dresser” (top) and “A photo of a {{color}} dragon” (bottom).

10

https://github.com/TEXTurePaper/TEXTurePaper/issues/8


References
[1] Google Draco authors. Draco: 3d data compression, 2017.

Release v1.5.6, https://github.com/google/draco. 8
[2] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel,

and Arthur Gretton. Demystifying MMD GANs. In ICLR,
2018. 7, 8, 9, 10

[3] Ralph Allan Bradley and Milton E Terry. Rank analysis of in-
complete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952. 9

[4] Shengqu Cai, Eric Ryan Chan, Songyou Peng, Mohamad
Shahbazi, Anton Obukhov, Luc Van Gool, and Gordon
Wetzstein. Diffdreamer: Consistent single-view perpet-
ual view generation with conditional diffusion models.
arXiv:2211.12131, 2022. 2

[5] Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc
Van Gool. Pix2nerf: Unsupervised conditional p-gan for
single image to neural radiance fields translation. In CVPR,
2022. 2, 3

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv:1512.03012, 2015. 2, 3, 6, 7,
8, 9, 10

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
3

[8] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Nießner. Text2tex: Text-driven tex-
ture synthesis via diffusion models. arXiv:2303.11396, 2023.
3

[9] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and
Matthieu Cord. Diffedit: Diffusion-based semantic image
editing with mask guidance. arXiv:2210.11427, 2022. 5

[10] Clement Fuji Tsang, Maria Shugrina, Jean Francois Lafleche,
Towaki Takikawa, Jiehan Wang, Charles Loop, Wenzheng
Chen, Krishna Murthy Jatavallabhula, Edward Smith, Artem
Rozantsev, Or Perel, Tianchang Shen, Jun Gao, Sanja Fi-
dler, Gavriel State, Jason Gorski, Tommy Xiang, Jianing Li,
Michael Li, and Rev Lebaredian. Kaolin: A pytorch library
for accelerating 3d deep learning research, 2022. 9

[11] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d textured
shapes learned from images. In NeurIPS, 2022. 3

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2, 3

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In NeurIPS, 2017. 7, 8, 9, 10

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 1, 2

[15] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The role of imagenet classes in
fréchet inception distance. In ICLR, 2023. 7, 8, 10

[16] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Mail-
lot. Least squares conformal maps for automatic texture atlas
generation. ACM Transactions on Graphics (ToG), 21(3):362–
371, 2002. 2, 9

[17] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In CVPR,
2022. 5

[18] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation of
3d shapes and textures. arXiv:2211.07600, 2022. 1, 3, 6, 7, 8,
9, 10

[19] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
3

[20] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (ToG),
41(4):1–15, 2022. 2, 3, 6

[21] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generating
3d point clouds from complex prompts. arXiv:2212.08751,
2022. 2, 3, 8

[22] Anton Obukhov. Fast almost-isotropic planar remesh-
ing algorithm, 2023. Commit SHA 56413d1,
https://github.com/toshas/remesh isotropic planar. 8

[23] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen
Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin. High-fidelity
performance metrics for generative models in pytorch, 2020.
Version: 0.3.0, DOI: 10.5281/zenodo.4957738. 7

[24] Anton Obukhov, Mikhail Usvyatsov, Christos Sakaridis, Kon-
rad Schindler, and Luc Van Gool. Tt-nf: Tensor train neural
fields. arXiv:2209.15529, 2022. 3

[25] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo,
Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Di-
nov2: Learning robust visual features without supervision.
arXiv:2304.07193, 2023. 7, 8, 10

[26] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben
Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv:2209.14988, 2022. 1, 3

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, 2021. 2, 8, 10

[28] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 9

[29] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. arXiv:2302.01721, 2023. 1, 3, 5, 6, 7, 8, 9, 10

11



[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 1, 2,
5, 7

[31] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In ACM
SIGGRAPH 2022 Conference Proceedings, 2022. 2

[32] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. arXiv:2205.11487, 2022. 1, 2

[33] Johannes L Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 3

[34] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Nießner, and Angela Dai. Texturify: Generating
textures on 3d shape surfaces. In EECV, 2022. 3

[35] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 2

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In CVPR, 2016. 8, 10

[37] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models.
arXiv:2210.04628, 2022. 3

[38] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In
NeurIPS, 2016. 3

[39] Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and Bolei
Zhou. 3d-aware image synthesis via learning structural and
textural representations. In CVPR, 2022. 3

12


	. Introduction
	. Related Work
	. Method
	. Experiments
	. Discussions and Conclusion
	. Large-Scale Study of ShapeNetSem
	. Subjective User Study
	. ShapeNet Rendering Settings
	. Ablation: Inpainting Zoning
	. Ablation: Number of Input Views
	. Prompt Augmentation

